Due date: Monday of Week 16

Exercises: 3, 6, 9, 14, pages 162-164 Exercises: 3, 4, 5, 6, 7, pages 189-190

Keep in mind the assertion of Problem 9, page 163. That gives a different characterization of rank of a matrix. Actually, this is the definition of rank in many other books. In the future HWs and exams, you can freely use the equivalence between *determinant rank* and rank. A related terminology is "minor". A minor is just the determinant of a submatrix.

Problem 1. Consider a matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \in \operatorname{Mat}_3(F),$$

and

$$xI_3 - A = \begin{bmatrix} x - a_{11} & -a_{12} & -a_{13} \\ -a_{21} & x - a_{22} & -a_{23} \\ -a_{31} & -a_{32} & x - a_{33} \end{bmatrix} \in \operatorname{Mat}_3(F[x]).$$

Write $\det(xI_3 - A) = c_0 + c_1x + c_2x^2 + c_3x^3$. Show that $c_3 = 1, c_0 = -\det(A)$. What are c_2 and c_1 ?

You might recognize that c_2 is related to tr(A). But what about c_1 ? Find the expression of c_1 even it is complicate. At the very end of this course (next spring), we will see how c_1 is related to A (for general A over general field. Over an algebraically closed field, it might be easier to connect c_1 with A.)

Problem 2. Let $A_i \in \operatorname{Mat}_{n_i \times n_i}$ be a square matrix for $1 \le i \le k$. We consider the following matrix in block form

$$A = \begin{bmatrix} A_1 & * & * & \dots & * \\ 0 & A_2 & * & \dots & * \\ 0 & 0 & A_3 & \dots & * \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & A_k \end{bmatrix}.$$

Show that $\det(A) = \det(A_1) \det(A_2) \dots \det(A_k)$.

This is a slight generalization of Exercise 7, page 155.

The next two problems might be hard.

Problem 3. Let $V = \mathbb{C}^2$, which can be viewed as a dimension 4 vector space over \mathbb{R} . Fix a basis \mathcal{B} when viewed as a vector space over \mathbb{R} . Given an element $A \in \operatorname{Mat}_{2\times 2}(\mathbb{C})$, we can consider the $(\mathbb{R}$ -)linear operator $T_A: V \to V$ given by $T_A(\alpha) = A\alpha$. Thus we can consider the matrix $[T_A]_{\mathcal{B}} \in \operatorname{Mat}_{4\times 4}(\mathbb{R})$. Take $A = \begin{bmatrix} a+bi & x+yi \\ 0 & c+di \end{bmatrix} \in \operatorname{Mat}_{2\times 2}(\mathbb{C})$. Compute $\det([T_A]_{\mathcal{B}}) \in \mathbb{R}$ and compare it with $\det(A) \in \mathbb{C}$.

We can consider the same question for $A \in \operatorname{Mat}_{n \times n}(\mathbb{C})$. The result is not hard to guess. But its proof seems complicate. We will prove this after Chapter 6. One could summarize the result of the

1

general case in the following commutative diagram

$$\operatorname{Mat}_{n\times n}(\mathbb{C}) \xrightarrow{} \operatorname{Mat}_{(2n)\times (2n)}(\mathbb{R})$$

$$\downarrow^{\operatorname{det}} \qquad \downarrow^{\operatorname{det}}$$

$$\mathbb{C} \xrightarrow{\operatorname{Nm}_{\mathbb{C}/\mathbb{R}}} \mathbb{R}.$$

where the top map is that defined by $A \mapsto [T_A]_{\mathcal{B}}$, and the $\operatorname{Nm}_{\mathbb{C}/\mathbb{R}} : \mathbb{C} \to \mathbb{R}$ map is $\operatorname{Nm}(z) = z\overline{z}$. One consequence of this result is $\det([T_A]_{\mathcal{B}}) \geq 0$. Note that if n = 1, the above gives a way to compute the (familiar) norm map using determinant of $\operatorname{Mat}_{2\times 2}(\mathbb{R})$.

The following problem is similar to the above one, but in a different situation. You only have to do part (1) of the next problem. Try part (2) for one specific example.

Problem 4. Denote $\alpha = \sqrt[3]{2}$. Consider the field $F = \{a + b\alpha + c\alpha^2 : a, b, c\}$. We also view F as a vector space over \mathbb{Q} of dimension 3.

- (1) For $x = a + b\alpha + c\alpha^2$. We define the linear map $T_x : F \to F$ by $T_x(y) = xy$, which is viewed a linear map between \mathbb{Q} -vector spaces. Fix a basis \mathcal{B} of F over \mathbb{Q} , we can get the matrix $[T_x]_{\mathcal{B}} \in \operatorname{Mat}_{3\times 3}(\mathbb{Q})$. We define a map $\operatorname{Nm}_{F/\mathbb{Q}} : F \to \mathbb{Q}$ by $\operatorname{Nm}_{F/\mathbb{Q}}(x) = \det([T_x]_{\mathcal{B}})$. Compute $\operatorname{Nm}_{F/\mathbb{Q}}$ explicitly. Show that $\operatorname{Nm}_{F/\mathbb{Q}}(xy) = \operatorname{Nm}_{F/\mathbb{Q}}(x)\operatorname{Nm}_{F/\mathbb{Q}}(y)$, and $\operatorname{Nm}_{F/\mathbb{Q}}(x) \neq 0$ unless x = 0.
- (2) Consider the vector space $V = F^n$. We have $\dim_F V = n$ and $\dim_{\mathbb{Q}} V = 3n$. Given a matrix $A \in \operatorname{Mat}_{n \times n}(F)$, we can consider the linear map $T_A : F^n \to F^n$ defined by $T_A(\alpha) = A\alpha$. Fix an ordered basis \mathcal{B} of V as a \mathbb{Q} -vector space and we can get a matrix $[T_A]_{\mathcal{B}} \in \operatorname{Mat}_{(3n) \times (3n)}(\mathbb{Q})$. What is the relationship between $\det(A) \in F$ and $\det([T_A]_{\mathcal{B}}) \in \mathbb{Q}$?

The result is similar to the above one and it could be summarized using the commutativity of the following diagram

$$\operatorname{Mat}_{n \times n}(F) \xrightarrow{} \operatorname{Mat}_{(3n) \times (3n)}(\mathbb{Q})$$

$$\downarrow^{\operatorname{det}} \qquad \qquad \downarrow^{\operatorname{det}}$$

$$F \xrightarrow{\operatorname{Nm}_{F/\mathbb{Q}}} \mathbb{Q}.$$

We won't prove this result in this course. If you are interested, see [Bou98, Proposition 6, page 546] for a proof.

The next problem is important in some sense because it explains one (deep hidden) reason why the matrix $xI_n - A$ is so important in Chapters 6 and 7. It is better to keep in mind the assertion at least. We might go back to this problem again in a future course (abstract algebra, which you will learn in your sophomore year.)

Let F be a field. We consider K = F[x] and K^n . An element $u \in K^n$ will be considered as a column vector and thus it has the form

$$u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix},$$

and each $u_i \in F[x]$ can be written as $u_i = u_{i0} + u_{i1}x + u_{i2}x^2 + \cdots + u_{ik}x^k$ with $u_{ij} \in F$. Since u_{ik} can be zero, we can take a k such that it works for all i, namely each u_i has its last term of the form $u_{ik}x^k$. Thus we can write u as

$$u = \begin{bmatrix} u_{10} \\ u_{20} \\ \vdots \\ u_{n0} \end{bmatrix} + \begin{bmatrix} u_{11} \\ u_{21} \\ \vdots \\ u_{n1} \end{bmatrix} x + \dots + \begin{bmatrix} u_{1k} \\ u_{2k} \\ \vdots \\ u_{nk} \end{bmatrix} x^k.$$

3

Write

$$\mathbf{u}_{j} = \begin{bmatrix} u_{1j} \\ u_{2j} \\ \vdots \\ u_{nj} \end{bmatrix} \in F^{n},$$

then we can write $u = \mathbf{u}_0 + x\mathbf{u}_1 + \cdots + x^k\mathbf{u}_k$. Here we write x^j in front of \mathbf{u}_j (so that it looks like a scaler times a column vector). Thus an element in $K^n = F[x]^n$ can be viewed as a polynomial with coefficients in F^n .

Fix a matrix $A \in \operatorname{Mat}_{n \times n}(F)$. Note that as an element in $\operatorname{Mat}_{n \times n}(K)$, the matrix $xI_n - A$ defines a linear map $T_{(xI_n - A)} : K^n \to K^n$ defined by

$$T_{(xI_n - A)}u = (xI_n - A)u,$$

as usual. We now consider the map $\phi: K^n \to F^n$ defines as follows. Given an element

$$u = \mathbf{u}_0 + x\mathbf{u}_1 + \dots + x^k\mathbf{u}_k \in K^n,$$

we define

$$\phi(u) = \mathbf{u}_0 + A\mathbf{u}_1 + \dots + A^k\mathbf{u}_k \in F^n.$$

Namely, we just replace the symbol x by the matrix A. The notation should be clear.

Problem 5. (1) Show that ϕ is surjective. (This should be trivial).

- (2) Show that $\operatorname{Im}(T_{(xI_n-A)}) \subset \ker(\phi)$. (This is also trivial).
- (3) Show that $\ker(\phi) \subset \operatorname{Im}(T_{(xI_n-A)})$. (It needs some work, but not very hard).

If you don't know how to do part (3), try the example when n = 2. Using notations and terminology you will learn later (in a different course), the assertions of this problem say that the sequence

$$K^n \xrightarrow{T_{(xI_n-A)}} K^n \xrightarrow{\phi} F^n \longrightarrow 0$$

is exact (as K-modules). Currently, you don't have to worry about the terminology.

References

[Bou98] Nicolas Bourbaki, Algebra I. Chapters 1–3, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1998. Translated from the French, Reprint of the 1989 English translation [MR0979982 (90d:00002)]. ↑2

1. CAUCHY-RIEMANN EQUATION

Let $U \subset \mathbb{C}$ be an open subset and let $f: U \to \mathbb{C}$ be a function. Let $z_0 \in U$ be a given point. The function f is called holomorphic at z_0 if there exists a \mathbb{C} -linear map $T: \mathbb{C} \to \mathbb{C}$ such that

$$\lim_{h \to 0} \frac{|f(z_0 + h) - f(z_0) - T(h)|}{|h|} = 0.$$

Here the absolute value $|\ |$ denote the standard one on \mathbb{C} .

We can identify $\mathbb{R}^2 \cong \mathbb{C}$ by the map $(x,y) \mapsto x + yi$ with $i = \sqrt{-1}$. Thus f can also be viewed as a function $F : \mathbb{R}^2 \to \mathbb{R}^2$. In other words, if f(x+iy) = u(x,y) + iv(x,y) with $u(x,y), v(x,y) \in \mathbb{R}$, then

$$F(x,y) = (u(x,y), v(x,y)).$$

For example, if $f(z) = z^2$, then we can write $f(x+iy) = x^2 - y^2 + 2xyi$. Thus $F(x,y) = (x^2 - y^2, 2xy)$. If $f(z) = \bar{z}$. Then f(x+yi) = x - yi and F(x,y) = (x, -y).

By definition, if f is holomorphic at z_0 , then F is differentiable at (x_0, y_0) . Thus $D(F)|_{(x_0, y_0)}$ exists. Moreover, we have

$$D(F)|_{(x_0,y_0)} = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{bmatrix} \Big|_{(x_0,y_0)}.$$

By definition, the map $D(F)_{(x_0,y_0)}: \mathbb{R}^2 \to \mathbb{R}^2$ is \mathbb{R} -linear.

Problem 6. (1) Show that f is holomorphic at z_0 iff F is differentiable at (x_0, y_0) and the \mathbb{R} -linear map $D(F)|_{(x_0, y_0)} : \mathbb{R}^2 \to \mathbb{R}^2$ is \mathbb{C} -linear.

- (2) Find a condition such that D(F)|_(x₀,y₀): ℝ² → ℝ² is ℂ-linear in terms of ∂u/∂x, ∂u/∂y, ∂v/∂x, ∂v/∂y.
 (3) Let f₁(z) = z², f₂(z) = z̄. Determine whether f₁ (or f₂) is holomorphic (at any point) using part (2).

The equations obtained above are called Cauchy-Riemann equations. Try to generalize this to a general map $f: \mathbb{C}^n \to \mathbb{C}$ (or even $F: \mathbb{C}^n \to \mathbb{C}^m$.)