HOMEWORK 11

Due date: Monday of Week 16

Exercises: 3, 6, 9, 14, pages 162-164
Exercises: 3, 4, 5, 6, 7, pages 189-190

Keep in mind the assertion of Problem 9, page 163. That gives a different characterization of
rank of a matrix. Actually, this is the definition of rank in many other books. In the future HWs
and exams, you can freely use the equivalence between determinant rank and rank. A
related terminology is “minor”. A minor is just the determinant of a submatrix.

Problem 1. Consider a matriz

ai;p a2 ais
A= |as1 a9 as3 | € Mat;g(F),
a3y asz2 as3

and
T — a1l —ai12 —ans
xl3 — A= —a9s1 T — a92 —Qa93 € Mat:;(F[JZ])
—asy —asz2 T —ass

Write det(xl3 — A) = co + 1z + cow? + c32®. Show that c3 = 1,co = — det(A). What are co and ¢y ?

You might recognize that cg is related to tr(A). But what about ¢;7? Find the expression of ¢;
even it is complicate. At the very end of this course (next spring), we will see how ¢; is related to
A (for general A over general field. Over an algebraically closed field, it might be easier to connect
¢ with A.)

Problem 2. Let A; € Mat,,, xn, be a square matriz for 1 <i < k. We consider the following matriz
in block form

0 0 0 ... A
Show that det(A) = det(A;) det(Asz) ... det(A).

This is a slight generalization of Exercise 7, page 155.

The next two problems might be hard.

Problem 3. Let V = C?, which can be viewed as a dimension 4 vector space over R. Fix a basis
B when viewed as a vector space over R. Given an element A € Matax2(C), we can consider
the (R-)linear operator Ty : V. — V given by Ta(o) = Aa. Thus we can consider the matriz

[Tals € Matyx4(R). Take A = [a -g bi iigﬂ € Matayx2(C). Compute det([Ta]s) € R and
compare it with det(A) € C.
We can consider the same question for A € Mat,,«,,(C). The result is not hard to guess. But its

proof seems complicate. We will prove this after Chapter 6. One could summarize the result of the
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general case in the following commutative diagram

Matan((C) Mat(gn)x(gn) (R)
ldet ldet
C Nineye R,

where the top map is that defined by A+ [T4]s, and the Nm¢ /g : C — R map is Nm(z) = 2Z. One
consequence of this result is det([T4]g) > 0. Note that if n = 1, the above gives a way to compute
the (familiar) norm map using determinant of Matgy2(R).

The following problem is similar to the above one, but in a different situation. You only have to
do part (1) of the next problem. Try part (2) for one specific example.

Problem 4. Denote o = /2. Consider the field F = {a + b+ ca?: a,b7c}. We also view F' as a
vector space over Q of dimension 3.

(1) For x = a+ba+ca?. We define the linear map T, : F — F by T,(y) = xy, which is viewed
a linear map between Q-vector spaces. Fix a basis B of F' over Q, we can get the matrix
[T:]5 € Matzx3(Q). We define a map Nmp/q : F — Q by Nmp/q(x) = det([T,]s). Compute
Nmp/q explicitly. Show that Nmp q(zy) = Nmp g(2)Nmp,qg(y), and Nmpq(x) # 0 unless
z=0.

(2) Consider the vector space V.= F™. We have dimp V = n and dimg V' = 3n. Given a matriz
A € Maty, xn(F), we can consider the linear map Ty : F™ — F™ defined by Ta(o) = Aa. Fix
an ordered basis B of V as a Q-vector space and we can get a matriz [Ta)p € Mat (3, x (3n) (Q)-
What is the relationship between det(A) € F' and det([Talg) € Q7

The result is similar to the above one and it could be summarized using the commutativity of the
following diagram

Matnxn(F) - Mat(?)n)x(?)n) (Q)

ldet J{det
Nrnp/@

F Q.

We won’t prove this result in this course. If you are interested, see [Bou98, Proposition 6, page 546]
for a proof.

The next problem is important in some sense because it explains one (deep hidden) reason why
the matrix xI,, — A is so important in Chapters 6 and 7. It is better to keep in mind the assertion
at least. We might go back to this problem again in a future course (abstract algebra, which you
will learn in your sophomore year.)

Let F be a field. We consider K = F[z] and K™. An element v € K™ will be considered as a
column vector and thus it has the form

Uy
U2

Un

and each u; € F[z] can be written as u; = u;p + w12 + Upx2 + -+ + upx® with u;; € F. Since u;,
can be zero, we can take a k such that it works for all ¢, namely each u; has its last term of the form
w;rx®. Thus we can write u as

uio Uil Uik
u20 U21 U2k

UnQ Un1 Unk
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Write

then we can write u = ug + zu; + - - - + Fuy,. Here we write 7 in front of u; (so that it looks like a
scaler times a column vector). Thus an element in K™ = F[z]|™ can be viewed as a polynomial with
coefficients in F™.

Fix a matrix A € Mat,, x,(F'). Note that as an element in Mat,, s, (K), the matrix «I,, — A defines
a linear map T\,r, —4) : K" — K" defined by

Tar,—ayu = (xl, — A)u,
as usual. We now consider the map ¢ : K™ — F™ defines as follows. Given an element
uw=ug+zuy + -+ 2*u, € K",
we define
o(u) =ug+ Auy + -+ AFuy, € F".
Namely, we just replace the symbol x by the matrix A. The notation should be clear.
Problem 5. (1) Show that ¢ is surjective. (This should be trivial).

(2) Show that Im(T 1, — a)) C ker(¢). (This is also trivial).
(3) Show that ker(¢) C Im(T(57,—a)). (It needs some work, but not very hard).

If you don’t know how to do part (3), try the example when n = 2. Using notations and
terminology you will learn later (in a different course), the assertions of this problem say that the
sequence

Twry,—a) ¢

K™ K" " 0
is exact (as K-modules). Currently, you don’t have to worry about the terminology.
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1. CAUCHY-RIEMANN EQUATION

Let U C C be an open subset and let f : U — C be a function. Let zy € U be a given point. The
function f is called holomorphic at z; if there exists a C-linear map 7T : C — C such that
lim |f(z0 + h) — f(20) = T'(h)]
h—0 ‘h|

=0.

Here the absolute value | | denote the standard one on C.

We can identify R? = C by the map (z,y) — 2 + yi with i = v/—1. Thus f can also be viewed as
a function F : R? — R2. In other words, if f(x + iy) = u(z,y) + iv(z,y) with u(z,y),v(z,y) € R,
then

F(l‘, y) = (u(x’ y)? ’U(QL‘, y))

For example, if f(2) = 22, then we can write f(z+iy) = 2? —y?+2xyi. Thus F(z,y) = (2®—y?, 22y).
If f(z) = 2. Then f(x +yi) =« —yi and F(z,y) = (z, —y).

By definition, if f is holomorphic at zp, then F' is differentiable at (xg,yo). Thus D(F)
exists. Moreover, we have

|($07y0)

z0,y0)

D(F)|

du  Ou
ox Jy
v v
b 8@/]
By definition, the map D(F) : R? — R? is R-linear.

Problem 6. (1) Show that f is holomorphic at zo iff F is differentiable at (xo,yo) and the
R-linear map D(F)] : R? — R? is C-linear.

(z0,Y0)

(z0,Y0)

20,Y0)
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(2) Find a condition such that D(F)| (4 40) : R* — R? is C-linear in terms of du/0x, Ou/dy, vz, dv/dy.
(3) Let f1(2) = 22, fo(2) = Z. Determine whether fi (or fa) is holomorphic (at any point) using
part (2).

The equations obtained above are called Cauchy-Riemann equations. Try to generalize this to a
general map f: C" — C (or even F': C" — C™.)
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