
HOMEWORK 11

Due date: Monday of Week 16

Exercises: 3, 6, 9, 14, pages 162-164
Exercises: 3, 4, 5, 6, 7, pages 189-190

Keep in mind the assertion of Problem 9, page 163. That gives a different characterization of
rank of a matrix. Actually, this is the definition of rank in many other books. In the future HWs
and exams, you can freely use the equivalence between determinant rank and rank. A
related terminology is “minor”. A minor is just the determinant of a submatrix.

Problem 1. Consider a matrix

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ∈ Mat3(F ),

and

xI3 −A =

x− a11 −a12 −a13
−a21 x− a22 −a23
−a31 −a32 x− a33

 ∈ Mat3(F [x]).

Write det(xI3 −A) = c0 + c1x+ c2x
2 + c3x

3. Show that c3 = 1, c0 = −det(A). What are c2 and c1?

You might recognize that c2 is related to tr(A). But what about c1? Find the expression of c1
even it is complicate. At the very end of this course (next spring), we will see how c1 is related to
A (for general A over general field. Over an algebraically closed field, it might be easier to connect
c1 with A.)

Problem 2. Let Ai ∈ Matni×ni
be a square matrix for 1 ≤ i ≤ k. We consider the following matrix

in block form

A =


A1 ∗ ∗ . . . ∗
0 A2 ∗ . . . ∗
0 0 A3 . . . ∗
...

...
...

...
...

0 0 0 . . . Ak

 .

Show that det(A) = det(A1) det(A2) . . . det(Ak).

This is a slight generalization of Exercise 7, page 155.

The next two problems might be hard.

Problem 3. Let V = C2, which can be viewed as a dimension 4 vector space over R. Fix a basis
B when viewed as a vector space over R. Given an element A ∈ Mat2×2(C), we can consider
the (R-)linear operator TA : V → V given by TA(α) = Aα. Thus we can consider the matrix

[TA]B ∈ Mat4×4(R). Take A =

[
a+ bi x+ yi

0 c+ di

]
∈ Mat2×2(C). Compute det([TA]B) ∈ R and

compare it with det(A) ∈ C.

We can consider the same question for A ∈ Matn×n(C). The result is not hard to guess. But its
proof seems complicate. We will prove this after Chapter 6. One could summarize the result of the
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general case in the following commutative diagram

Matn×n(C) //

det

��

Mat(2n)×(2n)(R)

det

��
C

NmC/R // R,

where the top map is that defined by A 7→ [TA]B, and the NmC/R : C → R map is Nm(z) = zz. One
consequence of this result is det([TA]B) ≥ 0. Note that if n = 1, the above gives a way to compute
the (familiar) norm map using determinant of Mat2×2(R).

The following problem is similar to the above one, but in a different situation. You only have to
do part (1) of the next problem. Try part (2) for one specific example.

Problem 4. Denote α = 3
√
2. Consider the field F =

{
a+ bα+ cα2 : a, b, c

}
. We also view F as a

vector space over Q of dimension 3.

(1) For x = a+ bα+ cα2. We define the linear map Tx : F → F by Tx(y) = xy, which is viewed
a linear map between Q-vector spaces. Fix a basis B of F over Q, we can get the matrix
[Tx]B ∈ Mat3×3(Q). We define a map NmF/Q : F → Q by NmF/Q(x) = det([Tx]B). Compute
NmF/Q explicitly. Show that NmF/Q(xy) = NmF/Q(x)NmF/Q(y), and NmF/Q(x) ̸= 0 unless
x = 0.

(2) Consider the vector space V = Fn. We have dimF V = n and dimQ V = 3n. Given a matrix
A ∈ Matn×n(F ), we can consider the linear map TA : Fn → Fn defined by TA(α) = Aα. Fix
an ordered basis B of V as a Q-vector space and we can get a matrix [TA]B ∈ Mat(3n)×(3n)(Q).
What is the relationship between det(A) ∈ F and det([TA]B) ∈ Q?

The result is similar to the above one and it could be summarized using the commutativity of the
following diagram

Matn×n(F ) //

det

��

Mat(3n)×(3n)(Q)

det

��
F

NmF/Q // Q.

We won’t prove this result in this course. If you are interested, see [Bou98, Proposition 6, page 546]
for a proof.

The next problem is important in some sense because it explains one (deep hidden) reason why
the matrix xIn − A is so important in Chapters 6 and 7. It is better to keep in mind the assertion
at least. We might go back to this problem again in a future course (abstract algebra, which you
will learn in your sophomore year.)

Let F be a field. We consider K = F [x] and Kn. An element u ∈ Kn will be considered as a
column vector and thus it has the form

u =


u1

u2

...
un

 ,

and each ui ∈ F [x] can be written as ui = ui0 + ui1x+ ui2x
2 + · · ·+ uikx

k with uij ∈ F . Since uik

can be zero, we can take a k such that it works for all i, namely each ui has its last term of the form
uikx

k. Thus we can write u as

u =


u10

u20

...
un0

+


u11

u21

...
un1

x+ · · ·+


u1k

u2k

...
unk

xk.
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Write

uj =


u1j

u2j

...
unj

 ∈ Fn,

then we can write u = u0 + xu1 + · · ·+ xkuk. Here we write xj in front of uj (so that it looks like a
scaler times a column vector). Thus an element in Kn = F [x]n can be viewed as a polynomial with
coefficients in Fn.

Fix a matrix A ∈ Matn×n(F ). Note that as an element in Matn×n(K), the matrix xIn−A defines
a linear map T(xIn−A) : K

n → Kn defined by

T(xIn−A)u = (xIn −A)u,

as usual. We now consider the map ϕ : Kn → Fn defines as follows. Given an element

u = u0 + xu1 + · · ·+ xkuk ∈ Kn,

we define
ϕ(u) = u0 +Au1 + · · ·+Akuk ∈ Fn.

Namely, we just replace the symbol x by the matrix A. The notation should be clear.

Problem 5. (1) Show that ϕ is surjective. (This should be trivial).
(2) Show that Im(T(xIn−A)) ⊂ ker(ϕ). (This is also trivial).
(3) Show that ker(ϕ) ⊂ Im(T(xIn−A)). (It needs some work, but not very hard).

If you don’t know how to do part (3), try the example when n = 2. Using notations and
terminology you will learn later (in a different course), the assertions of this problem say that the
sequence

Kn Kn Fn 0
T(xIn−A) ϕ

is exact (as K-modules). Currently, you don’t have to worry about the terminology.
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1. Cauchy-Riemann equation

Let U ⊂ C be an open subset and let f : U → C be a function. Let z0 ∈ U be a given point. The
function f is called holomorphic at z0 if there exists a C-linear map T : C → C such that

lim
h→0

|f(z0 + h)− f(z0)− T (h)|
|h|

= 0.

Here the absolute value | | denote the standard one on C.
We can identify R2 ∼= C by the map (x, y) 7→ x+ yi with i =

√
−1. Thus f can also be viewed as

a function F : R2 → R2. In other words, if f(x + iy) = u(x, y) + iv(x, y) with u(x, y), v(x, y) ∈ R,
then

F (x, y) = (u(x, y), v(x, y)).

For example, if f(z) = z2, then we can write f(x+iy) = x2−y2+2xyi. Thus F (x, y) = (x2−y2, 2xy).
If f(z) = z̄. Then f(x+ yi) = x− yi and F (x, y) = (x,−y).

By definition, if f is holomorphic at z0, then F is differentiable at (x0, y0). Thus D(F )|(x0,y0)

exists. Moreover, we have

D(F )|(x0,y0) =

[
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]∣∣∣∣∣
(x0,y0)

.

By definition, the map D(F )(x0,y0) : R2 → R2 is R-linear.

Problem 6. (1) Show that f is holomorphic at z0 iff F is differentiable at (x0, y0) and the
R-linear map D(F )|(x0,y0) : R2 → R2 is C-linear.
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(2) Find a condition such that D(F )|(x0,y0) : R2 → R2 is C-linear in terms of ∂u/∂x, ∂u/∂y, ∂v/∂x, ∂v/∂y.

(3) Let f1(z) = z2, f2(z) = z̄. Determine whether f1 (or f2) is holomorphic (at any point) using
part (2).

The equations obtained above are called Cauchy-Riemann equations. Try to generalize this to a
general map f : Cn → C (or even F : Cn → Cm.)
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